# CONTENTS

## Contributors

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td></td>
</tr>
</tbody>
</table>

## Preface

<table>
<thead>
<tr>
<th>Preface</th>
<th>xi</th>
</tr>
</thead>
</table>

## 1. Morphological Diversity of the Gastrointestinal Tract in Fishes


<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>2</td>
</tr>
<tr>
<td>2. Gut Organization</td>
<td>3</td>
</tr>
<tr>
<td>3. Gut Development</td>
<td>25</td>
</tr>
<tr>
<td>4. Digestive Function</td>
<td>29</td>
</tr>
<tr>
<td>5. Non-Digestive Adaptations</td>
<td>30</td>
</tr>
<tr>
<td>6. Stomach Loss in Fishes</td>
<td>34</td>
</tr>
<tr>
<td>7. Future Perspectives</td>
<td>44</td>
</tr>
</tbody>
</table>

## 2. Feeding, Digestion and Absorption of Nutrients

_Anne Marie Bakke, Chris Glover and Ashild Krogdahl_

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>57</td>
</tr>
<tr>
<td>2. Feeding Strategies</td>
<td>58</td>
</tr>
<tr>
<td>3. Secretion</td>
<td>61</td>
</tr>
<tr>
<td>4. Digestion</td>
<td>68</td>
</tr>
<tr>
<td>5. Absorption</td>
<td>75</td>
</tr>
</tbody>
</table>

## 3. Barrier Function and Immunology

_Kenneth Cain and Christine Swan_

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Introduction</td>
<td>112</td>
</tr>
<tr>
<td>2. The Immune System in Fish</td>
<td>112</td>
</tr>
<tr>
<td>3. Mucosal Immunity in Fish: The Gut as a First Line of Defense</td>
<td>118</td>
</tr>
</tbody>
</table>
# Natural Gut Microbes and their Role in Immunity

Martin Grosell

1. Introduction
2. Conclusion

## Conclusion

125

---

# The Role of the Gastrointestinal Tract in Salt and Water Balance

**Martin Grosell**

1. Introduction
2. Drinking
3. Gastrointestinal Processing of Ingested Seawater
4. Future Directions

## Future Directions

156

---

# The Role of Feeding in Salt and Water Balance

**Chris M. Wood and Carol Bucking**

1. Introduction
2. Practical Difficulties and Solutions for Iono/Osmoregulatory Studies on Feeding Fish
3. Ion Levels in Diets and Ration Levels
4. Ionic Interactions of Interest in the Diet/Chyme
5. Impact of Feeding on Internal Ions and Plasma Composition
6. Freshwater Fish: The Critical Importance of Ion Acquisition from the Diet
7. Freshwater Fish: The Impact of Feeding on Gill and Kidney Function
8. Seawater Fish: The Critical Importance of Drinking and Water Conservation by the Gastrointestinal Tract
9. Seawater Fish: The Impact of Feeding on Gill and Kidney Function
10. Marine Elasmobranchs—A Special Case
11. Future Directions

## Future Directions

196

---

# Implications of GI Function for Gas Exchange, Acid–Base Balance and Nitrogen Metabolism

**J.R. Taylor, C.A. Cooper and T.P. Mommsen**

1. Introduction
2. Gas Exchange
3. Acid–Base Balance
4. Nitrogen Metabolism
5. Concluding Remarks

## Concluding Remarks

248

---

# The Gastrointestinal Tract as an Endocrine/Neuroendocrine/Paracrine Organ: Organization, Chemical Messengers and Physiological Targets

**Yoshio Takei and Christopher A. Loretz**

1. Introduction
2. Hormones Secreted from Gastrointestinal Tracts and Accessory Organs and Tissues
3. Digestion

## Digestion

278
## CONTENTS

4. Appetite Regulation 280  
5. Metabolism and Growth 286  
6. Osmoregulation 288  
7. Conclusions and Future Perspectives 300  

8. The Enteric Nervous System  
   *Catharina Olsson*  
   1. Anatomical Overview of the Enteric Nervous System 320  
   2. Extrinsic Innervation of the Gut 322  
   3. Transmitter Content and Distribution 324  
   4. Functional Cell Types 331  
   5. Development of the Enteric Nervous System 332  
   6. Neuronal Control of Effector Functions 333  
   7. Concluding Remarks 341  

9. The Circulation and Metabolism of the Gastrointestinal Tract  
   *Henrik Seth, Michael Axelsson and Anthony P. Farrell*  
   1. Introduction 351  
   2. Vascular Anatomy of the Gastrointestinal Tract: Diversity Among Fishes 352  
   3. Control of Gastrointestinal Blood Flow Under Routine Conditions 356  
   4. Control of Gastrointestinal Blood Flow Under Various Conditions 360  
   5. Gastrointestinal Metabolism 376  
   6. Concluding Remarks 383  

10. The GI Tract in Air Breathing  
    *Jay A. Nelson and A. Mickey Dehn*  
    1. Introduction 395  
    2. Evolution of Air Breathing in Fish 398  
    3. Morphology of the Gut as an Air-breathing Organ 405  
    4. Circulatory Modifications Associated with Use of Gut ABOs 412  
    5. Physiology of Gut Air Breathing 414  
    7. Ammonia Volatilization by the GI Tract 426  

**INDEX** 435  

**OTHER VOLUMES IN THE FISH PHYSIOLOGY SERIES** 445  

**COLOR PLATE SECTION**