CONTENTS

1. **Silver**
 Chris M. Wood
 1. Introduction
 2. Sources of Silver and Occurrence in Natural Waters
 3. Speciation in Freshwater
 4. Speciation in Seawater
 5. Environmental Situations of Concern
 6. Acute and Chronic Ambient Water Quality Criteria in Freshwater and Seawater
 7. Waterborne Silver Toxicity in Freshwater
 8. Waterborne Silver Toxicity in Saltwater
 9. Essentiality or Non-Essentiality of Silver
 10. Potential for Bioconcentration and/or Biomagnification of Silver
 11. Characterization of Uptake Routes
 12. Characterization of Internal Handling
 13. Characterization of Excretion Routes
 14. Behavioral Effects of Silver
 15. Molecular Characterization of Silver Transporters, Storage Proteins, and Chaperones
 16. Genomic and Proteomic Studies
 17. Interactions with Other Metals
 18. Knowledge Gaps and Future Directions

2. **Aluminum**
 Rod W. Wilson
 1. Introduction
 2. Chemical Speciation in Freshwater and Seawater
 3. Sources (Natural and Anthropogenic) of Aluminum and Economic Importance
 4. Behavioral Effects of Aluminum
 5. Genomic and Proteomic Studies
 6. Interactions with Other Metals
 7. Knowledge Gaps and Future Directions
Cadmium
James C. McGeer, Som Niyogi and D. Scott Smith

1. Introduction 126
2. Chemical Speciation in Freshwater and Seawater 127
3. Sources (Natural and Anthropogenic) of Cadmium and Economic Importance 131
4. A Survey of Acute and Chronic Ambient Water Quality Criteria 135
5. Mechanisms of Toxicity 138
6. Essentiality of Cadmium 148
7. Potential for Bioconcentration and Biomagnification of Cadmium 148
8. Characterization of Uptake Routes 152
9. Characterization of Internal Handling 158
10. Characterization of Excretion Routes 161
11. Behavioral Effects of Cadmium 162
12. Molecular Characterization of Cadmium Transporters and Storage Proteins 164
13. Genomic and Proteomic Studies 166
14. Interactions with Other Metals 167
15. Knowledge Gaps and Future Directions 168

Lead
Edward M. Mager

1. Chemical Speciation in Freshwater and Seawater 186
2. Sources (Natural and Anthropogenic) of Lead and Economic Importance 191
3. Environmental Situations of Concern 194
4. A Survey of Acute and Chronic Ambient Water Quality Criteria in Various Jurisdictions in Freshwater and Seawater 196
5. Mechanisms of Toxicity 198
6. Non-Essentiality of Lead 204
7. Potential for Bioconcentration and Biomagnification of Lead 204
8. Characterization of Uptake Routes 207
9. Characterization of Internal Handling 212
10. Characterization of Excretion Routes 218
11. Behavioral Effects of Lead 220
12. Molecular Characterization of Lead Transporters, Storage Proteins, and Chaperones 221
13. Genomic Studies 222
14. Interactions with Other Metals 223
15. Knowledge Gaps and Future Directions 225

5. Mercury
Karen Kidd and Katharina Batchelor

1. Introduction 238
2. Chemical Speciation in Water 239
3. Sources of Mercury and Economic Importance 240
4. Environmental Situations of Concern 241
5. A Survey of Acute and Chronic Ambient Water Quality Criteria for Freshwater and Seawater 242
6. Mechanisms of Toxicity 242
7. Essentiality or Non-Essentiality of Mercury 261
8. Bioconcentration and Biomagnification of Mercury 261
9. Characterization of Uptake Routes 262
10. Characterization of Internal Handling 270
11. Characterization of Excretion Routes 277
12. Behavioral Effects of Mercury 282
13. Molecular Characterization of Mercury Transporters, Storage Proteins, and Chaperones 283
14. Genomic and Proteomic Studies 284
15. Knowledge Gaps and Future Directions 284

6. Arsenic
Dennis O. McIntyre and Tyler K. Linton

1. Chemical Speciation in Freshwater and Saltwater 298
2. Sources (Natural and Anthropogenic) of Arsenic and Economic Importance 303
3. Environmental Situations of Concern 304
4. A Survey of Acute and Chronic Ambient Water Quality Criteria in Various Jurisdictions in Freshwater and Saltwater 304
5. Mechanisms of Toxicity 306
6. Essentiality or Non-Essentiality of Arsenic 321
7. Potential for Bioaccumulation and/or Biomagnification (or Biodiminution) of Arsenic 321
8. Characterization of Uptake, Internal Handling, and Excretion 326
9. Detoxification and Mechanisms for Tolerance 334
10. Behavioral Effects of Arsenic 335
12. Interactions with Other Metals 336
13. Knowledge Gaps and Future Directions 337
7. **Strontium**
M. Jasim Chowdhury and Ronny Blust
1. Chemical Speciation in Freshwater and Seawater 352
2. Sources and Economic Importance of Strontium 354
3. Environmental Situations of Concern 356
4. Acute and Chronic Ambient Water Quality Criteria in Various Jurisdictions in Freshwater and Seawater 357
5. Mechanisms of Toxicity 358
6. Non-Essentiality of Strontium 362
7. Potential for Bioconcentration and Biomagnification of Strontium 362
8. Characterization of Uptake Routes 366
9. Characterization of Internal Handling 374
10. Characterization of Excretion Routes 379
11. Behavioral Effects of Strontium 380
12. Molecular Characterization of Strontium Transporters, Storage Proteins, and Chaperones 380
13. Genomic and Proteomic Studies 381
14. Interactions with Other Metals 382
15. Knowledge Gaps and Future Directions 382

8. **Uranium**
Richard R. Goulet, Claude Fortin and Douglas J. Spry
1. Chemical Speciation in Freshwater and Seawater 392
2. Sources of Uranium and its Economic Importance 398
3. Environmental Situations of Concern 399
4. A Survey of Acute and Chronic Ambient Water Quality Criteria in Various Jurisdictions in Freshwater and Seawater 401
5. Mechanisms of Toxicity 403
6. Water Chemistry Influences on Bioavailability and Toxicity 408
7. Non-Essentiality of Uranium 412
8. Potential for Bioaccumulation of Uranium 412
9. Characterization of Uptake Routes 413
10. Characterization of Internal Handling 416
11. Characterization of Excretion Routes 417
12. Behavioral Effects of Uranium 417
13. Genomic and Proteomic Studies 418
14. Interactions with Other Metals 418
15. Knowledge Gaps and Future Directions 418

9. **Modeling the Physiology and Toxicology of Metals**
Paul Paquin, Aaron Redman, Adam Ryan and Robert Santore
1. Introduction 430
2. Model Frameworks for Evaluating Metal Accumulation 432
3. Models Relating Metal Accumulation to Effects 447
4. Regulatory Applications 467
5. Future Model Development Needs 470

INDEX 485

OTHER VOLUMES IN THE FISH PHYSIOLOGY SERIES 505

COLOR PLATE SECTION