Direct evidence of a biophysical retention mechanism for coral reef fish larvae

Claire B. Paris and Robert K. Cowen
Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida, 33149-1098

Abstract

We examine the hypothesis that reef fish larvae have some direct influence on their own dispersal and ability to recruit to their natal reef by tracking cohorts of bicolor damselfish (Stegastes partitus) from hatching to settlement onto the reef, about 30 d later. We conducted high-resolution sampling during two consecutive years in a small area (15 km × 20 km) off the west coast of Barbados, extending from depths of 0 to 100 m. Observations of discrete stage-specific larval patches of mean size of 29.4 and 13.2 km² for preflexion (1-5-d old) and flexion/postflexion (>5-d old) stages extending ca. 30 m in the vertical indicated that larvae initially dispersing as patches tend to stay in coherent patches throughout their pelagic duration. Highest concentrations of preflexion larvae within a patch were in the upper 20 m, while those of older larvae were always deeper. Downward migration of about 60 m throughout ontogeny within stratified currents represented a retention mechanism for locally spawned larvae. Most of the variability in estimated retention rates between daily cohorts occurred during the earliest stages as a result of the dynamic nature of surface currents experienced by larvae prior to the onset of vertical migration. Differences in residence time between experiments were consistent with observed intermonthly variability in recruitment strength, implying that pelagic processes can explain recruitment rates. These results provide empirical evidence for larval retention of coral reef fishes and stress the role of active behavior in larval transport.

The early life history of many marine benthic organisms includes pelagic larvae, which may act as agents of dispersal and gene flow. Previous larval and molecular studies suggest that long-distance dispersal of marine larvae is a common event over evolutionary time scales, leading to considerable genetic population connectivity among distant populations (Thorson 1950; Scheltema 1986). However, over ecological time scales, recruitment of fish larvae to adult populations often depends on local retention (Schultz and Cowen 1994; Doherty et al. 1995; Shaw et al. 1999), and models indicate that long-distance transport over hundreds of kilometers is likely insufficient to sustain marine populations (Cowen et al. 2000, 2003). Further, it has been suggested that some larvae may have evolved behaviors that allow them to exert control over their transport and reduce dispersal away from their natal reef and facilitate self-recruitment (Cowen and Castro 1994; Schultz and Cowen 1994; Bakun 1996). Larval behavioral capabilities could indeed create a wide variety of biophysical interactions.

Large-scale circulation patterns tend to disperse larval fishes, while small-scale processes and interactions of currents with the bathymetry may concentrate larvae locally and limit horizontal diffusion and advection (Black et al. 1990; Limouzy-Paris et al. 1997; Reiss et al. 2000). In the case of island circulation, processes limiting advection away from the island include trapped eddies and other island-mass effects such as topographically steered currents (Boden 1952; Sanders 1981; Boehlert et al. 1992). Because physical processes act throughout the larval life history of coral reef fishes, they have the potential to influence a range of behaviors, including the strategy and timing of adult spawning (Parrish et al. 1981; Hugget et al. 2003), the timing of settlement and metamorphosis to juvenile stages (Victor 1984; Sponaugle and Cowen 1994), as well as diel migrations and vertical preferences during larval ontogeny (Leis 1986). Vertical migrations can be used to move between vertically stratified water masses or currents. Including the effect of such active behavior in models of larval transport seems critical to fully explain observations (Werner et al. 2001; Hugget et al. 2003). However, active behavior is rarely incorporated in larval transport models because of lack of direct behavioral observations.

Consistent larval distribution patterns may reflect behaviors that are adapted to circulation features occurring in a wide variety of pelagic environments, thereby facilitating return to the natal habitat (Cowen and Castro 1994; Cowen 2002). Likewise, species living in a variable environment may have evolved abilities to quickly change their behavior or adopt one among several possibilities (Bakun 1996).

While adaptive behaviors during the pelagic phase are linked to transport processes, the environmental factors sampled rarely include direct (e.g., Boehlert and Mundy 1993) or even indirect current measurements (e.g., Moser and Pomeranz 1999), or are often not measured concurrently with and at the same scales as the biological processes (Rodríguez et al. 2001), limiting the interpretation of biophysical interactions. Studies that have demonstrated patterns of larval distribution have not adequately resolved the spatiotemporal scales to reveal a cause–effect relationship or to develop a process-orientated explanation of local retention. To date, there are no direct data demonstrating the importance of biological response, if any, in the effectiveness of physical processes in retaining or returning offspring. To observe such bio-

Acknowledgments

We thank Kamazima Lwiza and Graham Allen for helping in collecting physical data; Suzanne Dorsey for sharing the settlement data; Dong-Ping Wang and Lian-Mei Gao for support in modeling; Teresa Rotunno, Brian Steves, Nathalie Reyns, and Thomas Wilson for important technical assistance; Su Sponaugle, William J. Richards, Mark Sullivan, Cédric Guigand, and John Purcell for valuable comments; and Andy Bakun for his insight. We are also grateful for the helpful comments of two anonymous referees. This work was funded by the NSF grant OCE-9521104.

© 2004, by the American Society of Limnology and Oceanography, Inc.
Biophysical retention mechanism

physical interactions, it is necessary to investigate pelagic processes throughout the entire pelagic larval duration (PLD) of specific larvae. Frequent and simultaneous measurements of current fields and distributions of larvae until they are competent to settle should help explain in situ larval behavior.

In this paper we examine the hypothesis that retention of early life stages of coral reef fishes near their natal reef (sensu Sinclair 1988, i.e., the ability of species with a pelagic phase to maintain self-sustained populations within a particular geographic space) is a consequence of the influence that larvae exert over their dispersal through behavior-related mechanisms. This was achieved by direct observations of biophysical interactions using high-resolution spatiotemporal measurements of currents and larval patches in the vicinity of Barbados, West Indies. The rationale for selecting an isolated island, east of the Lesser Antilles, was to minimize the likelihood of larval input from upstream sources.

Our main objective was to investigate the mechanism by which coral reef fish larvae may maximize their return to the settlement habitat of the natal population. For this purpose, we needed to determine the role of larval behavior in controlling dispersal and horizontal advection and its relationship to the island-scale flow patterns. We proceeded stepwise by (1) identifying a potential retention mechanism by describing the three-dimensional in situ distribution of larval patches within their pelagic environment throughout the course of the larval life, (2) constructing a larval transport model based on in situ data collected during the same period, (3) validating the model by tracking virtual larvae and comparing changes in their spatial distribution to observed changes in larval distributions, and (4) using the model to test the biophysical retention mechanism identified through observations. Findings are discussed in the terms of the degree to which pelagic processes shape recruitment strength.

Methods

Study species and general sampling scheme—A focal species, the bicolor damselfish *Stegastes partitus* (Poey) (Pomacentridae), was chosen to serve as a proxy for identifying general mechanisms in reef fish recruitment (Fig. 1). This species is one of the most ubiquitous inhabitants of coral reefs in the western central Atlantic (Emery 1973), including Barbados (Butsh 1939). Typically the adult phase is associated with sparse cover coral substrates, rubble, and patch reefs in shallow waters. Female spawn demersal, single-layer egg clutches in nests guarded by males (Cole and Sadovy 1995). Peak spawning occurs during the third quarter and new moon at Barbados (Sponaugle and Cowen 1996a); the eggs hatch at night after a 4-d incubation period, and larvae are released directly from the reef where they enter the pelagic realm, at which point they quickly absorb their yolk sac (<12 h; Dorsey unpubl. data). The mean pelagic larval duration for *S. partitus* recruiting to Barbados is $30.55 \pm$
0.58 d and ranges from 26 to 36 d (Sponaugle and Cowen 1996a). Our premise was to initiate sampling during the stage of the lunar cycle when peak hatching normally occurs based on simultaneous monitoring of the daily reproductive output (Dorsey and Cowen unpubl. data). In principle, this allowed us to track a monthly cohort of fishes throughout their pelagic larval stage.

Study site and previous ichthyoplankton work—Previous extensive plankton surveys around Barbados in 1990–1991 identified an area of high larval concentrations that was persistent in spite of the variable nature of the incident flow (Cowen and Castro 1994). Based on these previous findings, the experiments took place on the western shore of Barbados in the area of high larval concentration and were limited to an area of 15×20 km (Fig. 2a). The island-scale flow at Barbados is dominated by a combination of large fluctuating current direction (typically reversing twice every 20 d; Paris et al. 2002) and intrusions of low-salinity waterentrained by North Brazil Current (NBC) rings originating from the Amazon (Kelly et al. 2000; Paris et al. 2002). External forcing by NBC rings is characterized by a strong signal on the local circulation (Paris et al. 2002), with a concomitant increased variability in local recruitment cycles (Sponaugle and Cowen 1996b).

Biophysical sampling—Integration of physical and biological processes was key to this study and was achieved by conducting a series of high-resolution, sequential hydrographic and planktonic surveys during two cruises on the R/V Seward Johnson carried in 1996 and 1997. Each cruise started in spring and lasted approximately 1 month (Table 1) and was timed to start near peak hatching (third quarter moon) of the bicolor damselfish.

The sampling protocol involved 3-d cycles of around-the-clock physical and biological measurements, continuously repeated for 27–29 d, except for two 1–2-d interruptions for port days. During day 1 of each sampling cycle (or 3-d survey), 26 conductivity–temperature–depth (CTD) casts typically covered the study area in 24 h, through an alongshore grid pattern (Fig. 2b). Along the ship track, a ship-mounted acoustic Doppler current profiler (ADCP; broad band 150 KHz) recorded velocity profiles (4-m vertical bin size, averaged every 4 min). During day 2, vertically discrete plankton samples were collected at 22 stations using a 1-m² multiple opening–closing net and environmental sensing system (MOCNESS) fitted with six nets of 333-µm mesh. ADCP profiles continued to be recorded concurrently with MOCNESS tows. Sampling was carried out during 24 h (12-h day and 12-h night), covering the domain in a zigzag pattern (Fig. 2c). Each station was sampled with five nets at 20-m increments within the upper 100 m (net 1, 100–80; net 2, 80–60; net 3, 60–40; net 4, 40–20; net 5, 20–0 m), since few damselfish larvae were previously collected at depths greater than 100 m (Cowen and Castro 1994). Each net was towed at ~2 knots in an oblique and upward fashion for 5 min in each stratum, resulting in a volume filtered of approximately 250 m³ per net. During day 3, three to eight satellite-tracked, global positioning system drifters equipped with standard holey-sock drogues (1-m diameter, 10-m long) were released offshore in clusters at various depths (2 m, 25 m, 50 m) and tracked within the study domain for up to 12 h to measure eddy diffusivity (see Paris et al. 2002 for drifter data). During day 3 of the 1997 cruise, a 10-m² MOCNESS fitted with five nets of 500-µm mesh was used to capture late developmental stages (prior to settlement on the reef). For this purpose, the shoreward stations were sampled with four nets at 20-m increments within the upper 80 m during night hours. A total of eight sampling cycles (3-d survey) were conducted from 8 May to 3 June 1996, and the entire experiment was replicated from 29 April to 27 May 1997 (Table 1).

Ichthyoplankton were sorted from the samples and identified to the lowest taxonomic level in the laboratory. Substantial larval series of the Pomacentridae family allowed the identification of S. partitus (Paris-Limouzy 2001), which were separated in two groups according to their ontogenetic development. The first group of larvae was composed of preflexion stages (stage 1, ca. 1–5-d old) prior to the caudal fin development; the second group included flexion and postflexion stages (stage 2, ca. >5-d old), following Kendall et al. (1984). Larval densities in numbers per 1,000 m³ of volume filtered were computed separately for these two groups to standardize catches and were designated as stage-specific densities.

Ontogenetic vertical migration was inferred from differences in the vertical distribution of larvae at the preflexion and postflexion stages and was used to model larval behavior. Larval patch coherence throughout ontogeny was explored by describing patch size including its vertical extent concurrently to the salinity and velocity fields. Larval patch shape is approximated to half an ellipsoid for the preflexion stages with highest densities at the surface and an ellipsoid for the postflexion stages where highest densities are deeper in the water column. The volume (V) of an ellipsoid is measured by

$$ V = 4\pi(a \times b \times c)/3 $$

where a and b are the horizontal distances measured from the core of the patch to the mean density contour line in the north–south and east–west direction, respectively, c is the vertical extent of the patch estimated by the depth of penetration from the core.

In situ larval fish transport (ISLAFIT)—To reproduce the dynamic habitat of the larvae, in situ current velocities were reconstructed from multivariate objective analysis of the CTD and ADCP data (temperature, salinity, and total currents) and described in Paris et al. (2002). This optimal statistical technique was used to remove noise from scattered sampling and generated flow fields in a regular mesh (12 × 12 grid), integrated every 20 m on five horizontal planes (Fig. 2a). A total of eight, five-layer Eularian maps of horizontal currents were produced for each sampling cycle. A 6-h time step was used to interpolate the currents between sampling cycles while the current from the last sampling cycle was maintained constant for 48 h, resulting in a continuous 30-d time series for each sampling experiment (1996 and 1997). Since oceanographic data were collected synoptically with ichthyoplankton, this 30-d coastal circulation
Fig. 2. Topography of the Lesser Antilles (depth in meters) in the vicinity of the island of Barbados, West Indies; (a) the study area (15 km × 20 km) is indicated by the white rectangle. Inserts indicated by the white frame in (a) illustrate (b) the biological sampling consisting of MOCNESS hauls during day (circle) and night (cross) stations and (c) the physical sampling consisting of CTD stations (letters) and ADCP track (dotted line).
model operated at the same spatial and temporal scales as
the biological processes and was used to track virtual larvae.

Larval advection in the horizontal plane was achieved via
a Lagrangian stochastic technique following Dutkiewicz et
al. (1993), by which horizontal diffusivity inherent to cur-
rents is modeled using a random-flight scheme. In summary,
virtual larvae are moved by the deterministic velocity but
are also allowed to diffuse against the mean velocity gradient
through a random kick (or stochastic velocity), reproducing
the small-scale eddy transport that is not well resolved by
our deterministic flow field resolution or subgrid turbulent
motion (Olson et al. 2001). This stochastic velocity is not
totally random at each step. Rather, its evolution is assumed
to be a first-order Markov process by which each time a
particle moves through the flow field, it loses a fraction of
its momentum to the surrounding fluid and in turn receives
a random impulse from a Gaussian random number gener-
ator. The resulting stochastic (or turbulent) velocity is cor-
related to the previous value up to the Lagrangian time scale
(or decorrelation time scale, T_L). The stochastic displace-
ment of a particle in one dimension (x-axis) is then given by the
following equations:

$$\frac{dx}{dt} = U + u'$$ \hspace{1cm} (1)

The turbulent velocity is stationary so its mean $\langle u' \rangle$ is con-
stant with time and its evolution is given by

$$du' = -(u'/T_L) \times dt + R_0 \times \langle u'^2 \rangle$$ \hspace{1cm} (2)

The time parameters specified in Table 2 were at first es-
timated by computing the autocovariance function of the de-
deterministic velocities and then adjusted by comparing trajec-
tories of particles with floats (see Paris et al. 2002) and with
observed displacements of larval patches (see Results sec-
tion). In addition, the horizontal diffusivity coefficient (K)
resulting from this imposed stochastic movement was ad-
justed to match the horizontal eddy diffusivity characterized
by the spatial scales prescribed by the Eularian velocity grid
size (L_x, L_y; see Okubo 1971) and was estimated by

$$K \sim T_L \langle u'^2 \rangle$$ \hspace{1cm} (3)

These parameters define the spatiotemporal scales at which
the larval transport model is operating and are thus mean-
ful (Okubo 1994).

Boundary conditions prescribed a perfect reflection and
no flux at the Barbados coastline (i.e., tracers cannot leave
the box at the shoreline), while tracers may leave the domain
at open boundaries. The biological component is introduced
in the Lagrangian stochastic particle tracking code as vertical
migration behavior, imposing sequential shifts in vertical dis-
tribution; this is achieved by displacing the distribution of
particles or tracers from one 20-m horizontal flow field layer
to the next. The onset of vertical migration behavior is ini-
tiated at flexion, which starts as early as 5 d after hatch for
$S. \text{paritus}$ (Paris-Limouzy 2001). At that stage, the gas blad-
der is already formed and active control by larva of this
particular family is tangible (Okubo 1971) and was estimated by

$$K \sim T_L \langle u'^2 \rangle$$ \hspace{1cm} (3)

These parameters define the spatiotemporal scales at which
the larval transport model is operating and are thus mean-
ful (Okubo 1994).

Virtual larvae are introduced as tracers representing the
horizontal density field of preflexion and postflexion larvae
observed within the sampling area. They are also introduced
as alongshore clusters of particles to simulate hatching
events from the bank reef situated on the west coast of Bar-
bados.

Qualitative validation was performed by comparing ob-
erved horizontal distribution of preflexion stages of $S. \text{par-}
titus in the surface layer (0–20 m) with those of the model output. For this purpose, observed patches of early larvae (stage 1) were projected into the in situ larval transport model and tracked until the next sampling cycle (3–5-d interval), then compared to observed stage 1 S. partitus distributions.

Retention rates—Larval retention rates were calculated as a postprocess of the modeled larval tracking output from ISLAFIT with two main goals. First, retention rates were used to quantify the effect of active behavior (i.e., vertical migration) versus passive transport of reef fish larvae. Second, they were used to estimate the fate of hatching events observed on the western shore of Barbados by comparing the changes of modeled retention rates with the observed differences in settlement strength between experiments. Retention was defined as the daily percentage of tracers (or virtual larvae) remaining within the study area per 20-m strata or within the entire domain (0–100 m).

Water residence time in the sampling box was also calculated, and this was achieved by releasing a total of 15,000 tracers on a regular mesh of 30 locations across the 12 × 12 grid in each of the five horizontal layers. Model runs at those fixed depths are conducted for 20 consecutive days, and the distribution of residence times is represented as an average of all runs or as a maximum value among all runs. Residence times may be underestimated since tracers cannot be tracked for more than the length of each sampling experiment (e.g., if tracers are released on day 20, residence time cannot exceed $20 - 20 = 9$ d). Water residence time indicates the passive role of the physical processes in limiting or enhancing dispersal.

To quantify the oceanographic component in transport variability between yearly cruises, daily hatching variability was homogenized by simulating alongshore hatching pulses every day for 20 consecutive days. This was accomplished by releasing simultaneously six patches of 1,000 tracers each along the coast. Releases were always initiated at the surface (0–20-m layer) and tracked until the end of the 29-d sampling period each year. Patch release was performed gradually throughout the first hatching day (1/4 of the tracers are released every 6-h for the 24-h period).

Results

Observed larval distribution—Residual velocity profiles in the domain show vertical shear with surface (0–20 m) intensification to the northwest (offshore flow) and onshore flow at depth (20–100 m) in both years, with peak onshore flow at 25 m in 1996 and at 20 and 80 m in 1997 (Fig. 3a,c). In general, a vertical ontogenetic shift of larval densities from the upper layers to deeper layers was observed. While 50–60% stage 1 S. partitus larvae were located in the upper 20 m within the offshore flow region, most stage 2 are further down into the onshore flow region (Fig. 3b,d). The difference in larval vertical distributions between experiments, with deeper larvae in 1997, is due to gear selectivity rather than true difference. During the 1997 experiment, we also used a large net (10-m² opening) to capture older larval stages (>16-d old; unpubl. data) that were avoiding the small net (1-m² opening).

Although stage 1 larvae were collected during all sampling cycles, there were fluctuations in the magnitude of post-hatching pulsces, with peak densities in 1996. As expected by physical diffusion and natural mortality acting concurrently upon pelagic larvae, stage 2 larvae were less abundant and not confined to the coast (Fig. 4). For May 1996, in contrast to May 1997, high stage 1 densities were not matched in the following sampling cycle by high densities of stage 2, indicating high transport out of the study area during the 3–5-d interval.

Larval patch dynamics—The average shape of observed larval patches was slightly longer in the north–south along-
Fig. 4. Three-dimensional distribution of S. partitus larvae for the preflexion stages (stage 1 ~ 1–5 d after hatch [DAH]) during sampling cycles (a) 2, 12 May and (b) 4, 20 May of 1996, (c) 3, 8 May and (d) 4, 13 May of 1997, and 3–5 d later for the flexion and postflexion stages (stage 2 > 5 DAH) during sampling cycles (e) 3, 15 May and (f) 5, 23 May of 1996, (g) 4, 13 May and (h) 5, 16 May of 1997. Layers represent 20-m intervals from 0–100 m; contours of densities are in number of larvae per 1,000 m^3; dots indicate sampling stations, and the bold line represents the western shore of Barbados.

Table 3. Spatial dimensions (mean length ± SD) of larval patches of Stegastes partitus at the preflexion (stage 1), flexion, and postflexion (stage 2); distances are measured from density contour lines of 50 and 10 larvae per 1000 m^3 for stage 1 and stage 2, respectively, across the core of the patch. Note that the shape of stage 1 patch is half an ellipsoid that interfaces with the ocean surface, while that of stage 2 is an ellipsoid.

<table>
<thead>
<tr>
<th>Stage</th>
<th>North–South (km)</th>
<th>East–West (km)</th>
<th>Thickness (m)</th>
<th>Estimated volume (m^3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stage 1</td>
<td>(n=10)</td>
<td>6.4±1.1</td>
<td>4.6±1.0</td>
<td>34.0±13.5</td>
</tr>
<tr>
<td>Stage 2</td>
<td>(n=6)</td>
<td>5.5±1.2</td>
<td>2.4±0.4</td>
<td>30.0±10.5</td>
</tr>
</tbody>
</table>

very high densities, their signature extended to the 40–60-m layer (Fig. 4b). Mean larval patch thicknesses were not significantly different between stages. Yet, stage 2 patches were found among all layers, with highest densities centered in deeper strata. Although some larval patches were found at flow convergences, additional analysis is necessary to clarify whether patch generation was due to passive accumulation of larvae rather than active aggregation.

In both experiments, NBC rings impinged on the island during survey 5 and persisted in the sampling domain throughout the rest of the surveys, disrupting the local circulation and bringing low-salinity water from the Amazon in the sampling domain (Paris et al. 2002). Despite the consistency in vertical position of stage-specific larval patches, during survey 6 of both years the core of stage 1 larval patches was no longer within the upper 20-m layer but in the 20–40-m stratum, confined within higher salinity (>35) than found at the surface (Fig 5). Coincidently, stage 1 larval patches lost their ellipsoid structure and were spread unevenly throughout the domain during the following surveys. Stage 2 larval patches remained undisturbed after the low-salinity intrusion, yet they also were found deeper (Fig. 5).

Comparison of predictions and observations: validation of ISLAFIT—Large stage 1 larval patches observed during the first sampling cycle (survey 1) of 1996 were projected as tracers into ISLAFIT and tracked until the next sampling cycle (Fig. 6a,b). The two initial patches merged and moved onshore before translating alongshore, reaching the northern tip of the island by the end of the 4-d run; these tracers ended up in a similar configuration as the single larval patch of S. partitus observed during survey 2. This patch was further tracked into ISLAFIT and exited the domain before the next sampling cycle (survey 3); in fact, very low densities of stage 1 larvae were present during survey 3. Similarly in 1997, large stage 1 larval patches observed during the third sampling cycle (survey 3) were projected into ISLAFIT and tracked for 5 d until the next sampling cycle. By survey 4, a discrete and sparse larval patch was observed in the southern part of the domain (Fig. 6a, 1997), the location and spread of which were well predicted by the model output (Fig. 6b, 1997).
er in the water column, retention increased and exceeded 20 d in the 60–80-m layer.

The effect of vertical migration on larval horizontal transport was further quantified by simulation of daily hatching near the coast and measuring cohort retention within the sampling domain. On average, for both years combined, 12% d\(^{-1}\) of the particles were flushed out during the first 5 d. Thereafter, the remaining tracers (ca. 25%) were retained at nearly 90% d\(^{-1}\) (Fig. 8). However, average retention rate did not represent the true picture. Among daily cohorts retention rates were highly variable (9.1% < SD < 35%), indicating that some cohorts could quickly be flushed out while others could experience more favorable current conditions. At the onset of vertical migration, two groups of cohorts were prominent (Fig. 8, bottom panel). Essentially, one group of daily cohorts had a high retention rate as a consequence of current features that concentrate particles, even in the near surface layer. The second group of cohorts had a very low retention rate, but was still present in the domain at day 5. From then on, retention rates in both groups of cohorts increased substantially by downward migration.

Recruitment variability—Despite rather constant lunar cyclical egg production rates, the relative success of cohorts differed between years (Fig. 9). Lower recruitment from the May 1996 cohorts compared to that from May 1997 might have been due to less favorable current conditions. To examine the contribution of pelagic transport processes to the observed interannual variability, larval retention rates were compared using the flow conditions in May 1996 (low recruitment) with those of May 1997 (high recruitment). Before the onset of vertical migration, there was a significant difference in the retention rates between the two sampling experiments, with higher retention in 1997 (Fig. 10). Furthermore, the tracking of tracers simulating high hatching pulses observed in both sampling experiments (survey 1 of 1996, and survey 3 of 1997) revealed that while larval patches where denser in 1996 than in 1997, they were quickly dispersed (Fig. 11a). Conversely, the sparser hatching pulse of 8 May 1997 was retained in the domain until the end of the experiment (Fig. 11b). Essentially, during 1996, the six modeled larval patches were rapidly mixed and carried out of the domain by strong currents within 5 d, whereas in 1997 the patches converged and were retained nearshore for over 17 d. In both years, the modeled discrete hatching pulses merged in a single patch and translated alongshore, moving predominantly toward the northern tip of the island. These model outcomes were consistent with the horizontal distribution of larval patches when they concentrated in the north-east portion of the sampling box (Fig. 6) and with the finding of higher recruitment in 1997 by examination of time series of settlement of *S. partitus* on the western shore of Barbados (Fig. 9). During May of 1997, the residual onshore flow penetrated deeper while the zonal flow reversed from north to south at 25 m, leading to a more efficient retention mechanism (Fig. 3).

Variations in the flow field led to substantial differences in retention rates, manifested in the recruitment signal. The relative success of cohorts is further quantified by comparing residence times between years. During the 1996 experiment,

Retention mechanism—Residual currents in the sampling domain were vertically stratified (Fig. 3). Overall, they exhibited a strong shear in the upper 25 m with their meridional (east–west) component offshore at the surface and onshore at depth during both cruises. However, between-cruise variability was apparent in both direction and speed throughout the water column while vertical distributions of *S. partitus* were consistent among cruises. Preflexion larvae (stage 1) were predominantly located in the upper 40 m of the water column, with nearly 60% of their abundance near the surface (0–20 m) and within strong offshore currents. Older larvae (stage 2) were predominantly distributed within deeper layers, shifting their center of concentration downward into the onshore flow region. The consistency of larval distribution among stages and cruises typifies an ontogenetic vertical migration.

To examine the interaction of this ontogenetic shift with stratified currents, residence time of tracers released at the surface (0–20-m layer) was compared to that of tracers released in deeper layers (Fig. 7). In the 20–40-m layer, tracers were retained for about a week on average and had an onshore maximum residence time of more than 2 weeks. Deep-

Fig. 5. Vertical profile of salinity (black line) and mean depth of center of mass for larval *S. partitus* stage 1 (circle) and stage 2 larvae (square) before and during the low-salinity event of 1996 and 1997. A total of 17–24 CTD casts and MOCNESS hauls was made during each survey; dotted lines and vertical bar represent 1 standard deviation around the mean salinity and mean depth of center of mass, respectively.
Fig. 6. Comparison of results from ichthyoplankton survey and ISLAFIT output. (a) Observed horizontal density distributions of early stage *S. partitus* larvae (no. 10^3 m^-3) on 9 May (cycle 1) and 12 May (cycle 2) of 1996 and 8 May (cycle 3) and 13 May (cycle 4) of 1997; (b) simulated distributions for the same time periods of 1996 and 1997. Note that for cycle 1, 1996 and cycle 3, 1997 in (b), tracer densities are depicted 6 h after initial seeding into the flow field. Contour lines represent the horizontal density field of observed larval patches and have the same key.

Fig. 7. Distributions of (a) mean residence time and (b) maximum residence time in days for each 20-m layer on the western shore of Barbados, from 8 May to 3 June 1996.
rejection was maximized for tracers released from the northern part of the western shore of Barbados, while during the 1997 experiment tracers released along the whole western shore of the island had a similar maximum residence time as the 1996 maximum values (ca. 15 d). Maximum residence time across the domain, integrated over 100 m and over a 20-d period, was ~30% higher in the 1997 experiment than in the 1996 (Fig. 12), which is consistent with observed differences in recruitment (36% higher in 1997; Fig. 9).

Discussion

Retention mechanism—Previous analysis of the local circulation near the island of Barbados indicated that currents near the island are mostly vertically stratified (Paris et al. 2002), and so larvae could potentially avoid passive advection through vertical migration. Hare et al. (1999) modeled larval transport in the shelf region of the northwest Atlantic to investigate pathways from Atlantic menhaden and spot spawning grounds to nursery habitats. They concluded, in agreement with our findings, that general patterns in larval transport determined by circulation were altered by the vertical distribution of larvae. However, they did not find any apparent adaptative advantage for these biophysical interactions since no significant difference in the outcome of larval transport was found between passive and migrating larvae. In contrast, our results indicate that the ontogenetic behavior of *S. partitus*, which was found consistently between cruises, represents a response to common flow conditions (e.g., vertically stratified flow), allowing larvae to minimize strong advective loss in the surface layers, and is compatible with the retention hypothesis (sensu Sinclair 1988). Thus, reef fish larvae influenced their dispersal by using the vertical shear of the water column. The present findings are also consistent with earlier observations of typical (temporally and spatially persistent) flow features in the vicinity of Barbados (e.g., surface alongshore jet and onshore flow at depth) associated with larval coral reef fish concentrations along the western shore of the island (Cowen and Castro 1994). Consequently, these results represent a validation to the modeling exercises of Armsworth (2000), which indicated that larvae would greatly influence their dispersal if they could position themselves in favorable currents through vertical movement.

Areas of low flow that could lead to retention of larvae without including any kind of behavior have been found around barrier reefs, in situations where the coral reefs rise from a shallow continental shelf platform (Black et al. 1990). In modeling for physical oceanographic use, Black et al. (1990) found that retention times tended to increase with reef size and decrease with shelf depth and currents and could be as high as 14 d, retaining as many as 20–40% of the particles. They found that in some cases, loss of tracers seemed to flatten off as a consequence of coral reef topo-
Larval patch dynamics—Presumably, coral reef fish larvae and planktonic organisms in general occur in patches (Haury et al. 1978; Victor 1984), but direct evidence of the three-dimensional configuration of single-species, stage-specific coral reef fish larval patches has not been previously reported. Horizontal size estimates of S. partitus patches provided in this study (2–6 km) are in agreement with the findings of Williams and English (1992) of late-stage, multispecies larval patches of at least 6 km across, arriving onto the reef, but shy of estimates of patch size for presettlement wrasses of 20–46 km (Victor 1984). However, the estimates of Victor (1984) were from simultaneous settlement at multiple locations and not a true measure of larval patch size. It is possible to infer the approximate number of larvae in a patch, since the observed thickness of a larval patch in the present study is in the 30-m range (Table 3). At the preflexion stage, 26×10^6 larvae may form a patch of 50 larvae per 1,000 m3, while an older larval patch (flexion and postflexion stages) can be estimated to 4.6×10^6 larvae (at an average density of 10 larvae per 1,000 m3). This is conceivable, considering that the mean reproductive effort of S. partitus egg (demersal) in Barbados is 43.6 eggs m$^{-2}$ d$^{-1}$ (Cowen et al. 2000) on the west coast of the island (reef area of ca. 138 km2 as derived from satellite imagery Reef at Risk) and generates ca. 6×10^9 eggs d$^{-1}$.

These results imply that larvae initially dispersing as patches tend to remain coherent, even perhaps until settlement. In fact, high variance in age observed within a settling cohort may not necessarily indicate that natal cohorts are dispersed, as suggested by Danilovicz and Sale (1999), but that discrete cohort patches may merge together passively or actively within specific local oceanographic features (e.g., convergences, accumulation area, strong gradients in habitat), which influence cohort characteristics (Victor 1984; Searcy and Sponaugle 2000). Patch generation and maintenance may be due to behavior-mediated aggregation in addition to passive accumulation (Boehlert and Mundy 1993). By migrating vertically, larvae may select flow conditions (direction and speed) that are favorable to retention and facilitate aggregation against dispersion; this particular subject requires further calculations of current convergences and divergences in relation to changes in S. partitus patch concentrations.
Biophysical retention mechanism

a) 1996

1997

b) 1997
lunar cyclic and peaked during the first half of May 1996 and the second half of May 1997, or 6 d before the new moon. However, larger hatching pulses were observed during the first four sampling cycles of each experiment and were replaced by less discrete pulses in the following sampling cycles, suggesting that although spawning still occurred in lower salinity waters, posthatch mortality may have been higher. Because these low-salinity events are more frequent than previously thought (Kelly et al. 2000), local recruitment variability may often result from the influence of those events on larval retention and survival. Understanding and quantifying those processes will ultimately lead to coupling of time series of egg production and settlement and will be the focus of future research.

Fig. 12. Maximum residence time across the domain, integrated over 100 m and over a 20-d period for the (a) 1996 and (b) 1997 experiments.

Larval patch dynamics provided additional information on the daily variable nature of retention, indicating that usually (except for a narrow window of a few days) all simulated hatching would be lost if larvae were confined to the 0–20-m layer. Yet dense larval patches are also thick and can reach deeper layers (20–60 m) where advective loss is minimized. Even when surface currents are not all favorable, hatching peaks may generate low levels of recruitment (e.g., during the 1996 experiment), suggesting that vertical extent of dense preflexion larval patches maximizes the chances for retention.

Recruitment variability—Tracking virtual larvae revealed that flow conditions during the initial period after hatch (preshflexion stage) are critical for the local survival of larval cohorts. High variability in the percent of larvae retained in the study domain during the early pelagic phase indicates that currents experienced by reef fish larvae before the onset of vertical migration play a large role in retention variability and consecutive recruitment.

Processes occurring at different scales can influence the supply of late-stage reef fish larvae in Barbados. Sponaugle and Cowen (1996a) found that sporadic physical larger scale events, which influenced the nearshore transport of larvae, were occasionally superposed on predictable cyclic peaks of settlement, synchronized to lunar periods and tidal amplitudes. Large current reversals of 20-d periodicity that constitute a major component of the local circulation at Barbados (Paris et al. 2002) may play an additional role in concentrating larvae by closing their Lagrangian trajectories into orbits.

In Barbados, large biological responses take place during freshwater intrusion events brought by North Brazil Current rings impinging on the island. Low salinity intruded halfway through the sampling experiments (sampling cycles 5–8 of both years), disrupting both the local circulation (Paris et al. 2002) and larval patch distributions. Damselsh fish larvae shifted downward, perhaps responding to a density signal. Such a change in patterns of ontogenetic vertical migration may decrease advection. Egg production of bicolor damsels fish is

Model strength and limitations—Scales: The choice of spatiotemporal scales is critical to the accuracy of the results. The sampling frequency and station separation scales used in this study are resolving well the biophysical interactions, and the multivariate objective analysis minimizes sampling error. Faster time scales are not necessary unless tides are important in predicting the coastal circulation. We would, however, recommend extending the sampling domain offshore to better resolve possible exchange (observation of immigration of larvae). The size of the sampling box also affects computations of residence time: in all simulations, tracers reaching the open boundaries are permanently lost from the domain, while in reality larval patches may have reentered (e.g., during current reversal); this tends to underestimate retention and ultimately underestimate the magnitude of total recruitment.

Role of behavior in larval transport model: The present study revealed that biophysical interactions are largely expressed by vertical migration of S. partitus larvae, limiting horizontal dispersal. Our results concur with the theory of Bakun (1996) and the model of Armsworth (2000) of swimming behavior demonstrating that it is quite energetically efficient for fish larvae to exploit currents and control advection in a structured vertical shear. In fact, recent laboratory experiments on larval walleye pollock showed that larvae respond to gradients of flow by adjusting their vertical distribution (Davis 2001). Therefore, marked ontogenetic vertical zonation is important for larval transport as suggested by Boehlert and Mundy (1993) and Cowen and Castro (1994). Vertical zonation is likely modified by predator–prey interactions, which are found to relate to biophysical factors such as light intensity and predator risk/prey availability (Job and Bellwood 2000). Hence the role of larval behavior is critical to predicting and tracking larval trajectories when modeling larval transport.

The biological component of ISLAFIT was strictly introduced as ontogenetic vertical behavior; another important factor to consider in predicting larval transport is the range of behavioral capabilities (i.e., vertical and horizontal swimming) of the early life-history stages. Swimming behavior of late pelagic stages has been studied within the past decade in laboratory experiments (Stobutzki and Bellwood 1994) and by in situ observations (Leis et al. 1996). These studies revealed that presettlement reef fishes are competent swim-
Biophysical retention mechanism

Larval trajectories as a hypothesis-testing tool: This study demonstrates the limitations of inferring the role of larval movement from temporal snapshots of larval distributions, even considering the high temporal resolution of these sampling cycles. Building a continuous, four-dimensional representation of real currents was essential to the identification of biophysical retention mechanisms.

Predicting larval trajectories with real-time flow conditions is an important tool for answering ecological questions. Such an approach is relevant to study the effect of life-history traits (e.g., spawning strategies, larval duration) on retention and recruitment. For example, a wide range of larval durations among coral reef fish species has led to the hypothesis that they dictate dispersal strategies (Cowen and Castro 1994; Sponaugle and Cowen 1994; Victor and Wellington 2000). Tracking larval cohorts of various coral reef fish species/locations could serve in testing numerous hypotheses on the selection of traits through life-history strategies in coral reef fishes.

Tracking larval patches led to the quantification of the time dependence of retention within sampling cycles as well as between years and may further help in identifying circulation features and events responsible for recruitment success. Identifying circulation features and events responsible for recruitment variability is therefore possible and will represent an extension of this work. Larval trajectories also provided insight on patch dynamics, indicating that larvae initially dispersing as patches can in fact remain coherent throughout ontogeny and may merge with other larval patches formed by younger or older cohorts. Formation and maintenance of larval patches requires further calculations of current convergences and divergences in relation to changes in larval density. Larval patch dynamics are also key to understanding the effect of food condition on growth and survival of the pelagic stages and investigate functional linkages between pelagic and demersal stages (Searcy and Sponaugle 2000).

Our study reveals a proximate mechanism of biophysical retention with direct evidence from field observations. Retention of locally spawned larvae resulted from the exploitation of the vertical stratification of currents through ontogenetic vertical behavior, further suggesting that larvae may be adapted to persistent flow structures (baroclinic flow). We demonstrate that (1) larval vertical distributions reflect behaviors capable of capitalizing on flows that promote return to the reef environment. (2) Flow conditions during the initial period after hatch (preflexion stages) are critical for the local survival of larval cohorts, and (3) retention of coral reef fish larvae is highly dependent on the interactions of the island near-field currents and larval behavior and is modulated by far-field currents. Although external forcing was similar between years, vertical shear was different between years, resulting in significant differences in retention further manifested in recruitment signals.

The present contribution also reveals that changes in larval fish distribution cannot be explained without invoking behavior. On average, larval movement in the vertical decreased advective loss by 20%, retaining approximately 20–25% of the larvae in the study area after 15 d. Retention is a function of ontogeny, and the vertical distribution maintained by S. partitus larvae serves as a biophysical mechanism to ensure maximum retention. These results stress the role of active behavior in larval transport in contrast to passive transport and have significant impact in studies of coral population connectivity. Further, this study confirms that, at ecological time scales, persistent local fish populations from Barbados are heavily self-seeded.

The implications of these results are twofold. First, in situ, high-resolution biophysical experiments are critical to accurately predict larval trajectories. Such experiments lead to a better understanding of physical processes occurring during the pelagic phase of a coral reef fish by defining the scales and patterns of processes underlying recruitment variability in reef fish populations. Second, the scales at which larval retention occurred were that of the island (i.e., in the order of tens of kilometers). The potential of biophysical mechanisms operating on such small scales also suggests that levels of larval exchange among distant populations may be considerably lower than previously assumed. These findings are important for management strategies, particularly those involving design of marine protected areas (MPA) network at local scales, facilitating site selection around the island where retention is optimized. They are also relevant to studies of population connectivity, whereby modeling long-distance larval transport should include behavioral fac-
tors (see Cowen et al. 2003). Further studies of species-specific behavior interacting with local circulation patterns from a variety of islands are needed for a better grasp of larval transport dynamics among coral reefs in the Caribbean.

References

Bakun, A. 1996. Patterns in the ocean: Ocean processes and marine population dynamics. California Sea Grant College System, University of California, La Jolla.

Biophysical retention mechanism

Received: 31 August 2003
Accepted: 8 June 2004
Amended: 5 July 2004