applying a large magnetic field, however, it is possible to lift the spin degeneracy, thereby splitting the modes and giving rise to conductance plateaus at integer multiples of e^2/h. In an early experiment by Thomas et al. (3), the 0.7 feature was shown to evolve smoothly toward e^2/h with increasing magnetic field, leading the authors to suggest that this feature may be associated with spin polarization of electrons in the constriction, which persists even in the absence of any external magnetic field.

The 0.7 feature has now been observed in many experiments, and our understanding of its origin has recently advanced considerably. Cronenwett et al. (5) have shown that the 0.7 feature exhibits many characteristics in common with the Kondo effect, a well-known phenomenon in solid-state physics that arises from the interaction of the conduction electrons in a metal with a magnetic impurity. This experiment suggests that electrons in the point contact play the role of the magnetic impurity in the usual Kondo effect, although how such a local magnetic moment might form in an open constriction was unclear at the time. Recent theoretical studies have cast light on this problem, however, indicating that the strong exchange interaction between electrons can give rise to a spin polarization, with an associated magnetic moment comparable to the Bohr magneton, as the electron density in the constriction is reduced (6, 7). Consistent with these ideas, Reilly et al. have suggested that the results of different experiments can be explained by an intuitive phenomenological model, which assumes that a density-dependent spin gap opens in the constriction as its conductance drops below $2e^2/h$ (8).

More recently, we have detected the spin-polarized state by studying the interaction between coupled quantum point contacts (see the figure) (9). By sweeping one point contact through the regime of expected spin polarization, we observe a resonant peak in the conductance of the upper point contact. Starting from the assumption that a spin-polarized state is formed in the swept point contact, Puller et al. (10) have formulated a model that accounts quantitatively for the features of our experiment. Within this model, the conductance resonance in the detector point contact is understood to result from its tunnel coupling to the spin-polarized system of electrons.

Although there is a growing consensus that spin polarization can indeed occur when electrons are strongly confined in a nanoscale constriction, much remains to be understood about the microscopic origins of this novel nanomagnetic system. Nonetheless, in future it will be of great interest to exploit these nanoscale constructions as a controlled experimental system for the study of exotic spin-transport phenomena (such as spin-charge separation). The lessons learned from these studies may ultimately be important for the development of future spintronic devices.

References

OCEANOGRAPHY

Microbes, Molecules, and Marine Ecosystems
Farooq Azam and Alexandra Z. Worden

Antonie van Leeuwenhoek (1632–1723), the first observer of bacteria, would be surprised that over 99% of microbes in the sea remained unseen until after Viking Lander (1976) set out to seek microbial life on Mars. Through much of the 19th and 20th centuries, microbiologists focused on life-threatening pathogenic microbes or microbes as models of how life “works” at the molecular level. But heightened concerns for ocean health and biodiversity, highlighted in the 2003 Pew Oceans Commissions report (1), prompted microbial explorations of the sea with state-of-the-art tools such as satellite and laser-based imaging, as well as massive genomic surveys riling the human genome project. This has led to a gold rush of discoveries underscoring critical influences of microbes on marine ecosystems and carrying significant implications for sustainability, global climate, and human health. The challenge is integrating these discoveries at the systems level to elucidate microbial roles in overall system resilience. Understanding the role of microbes in structuring healthy and stressed marine ecosystems will provide the mechanistic basis for prognostic models. Accomplishing this may require a new and unifying framework for conceptualizing these ecosystems.

Excitement over the “microbial ocean” was roused by the 1977 seminal discovery by Hobbie (2) and later studies that pelagic bacteria are hugely abundant (10^8 ml^-1), accounting for most oceanic biomass and metabolism (3). They had eluded detection because most are extremely small—only a few percent of Escherichia coli in volume—and uncultivable. Thus, in order to measure bacterial biodiversity and in situ metabolism, microbial oceanographers had to devise cultivation-independent methods. Results show that bacteria are a major biological force in the oceanic carbon cycle and ecosystem structure.

Photosynthetic bacteria Prochlorococcus and Synechococcus are the most abundant oceanic primary producers, and their sequenced genomes provide new ecological insights (4–6). Other discoveries confront oceanographers and conservation biologists with the probability that many functional capabilities and mechanisms remain unknown. For instance, a bacterial gene for proteorhodopsin was discovered 3 years ago (7). This pigment, thought to exist only in Archaea, converts light energy directly into an electrical gradient across the cell membrane. The gene occurs in divergent marine bacterial taxa and diverse environments (8); hence, inclusion of proteorhodopsin activity may change oceanic energy budgets. Another important example is the discovery of oceanwide distribution of anoxic phototrophic bacteria that contribute to oceanic energy and carbon budgets (9).

Nitrogen budgets, a regulating force of oceanic primary productivity, must also be reconsidered given new evidence for microbial N2 fixation as a common feature of oceanic systems (10, 11). Despite tremendous diversity, a single bacterial clade can dominate numerically. The α-proteobacterial clade SAR11 constitutes ~30% of Sargasso Sea surface cells (12), and a newly discovered cluster within the Roseobacter clade, found...
Environmental genomics is also revealing bacterial interactions with marine animals, and their influences on animal populations and ecosystem function. Corals offer an excellent example. A recent study discovered 430 novel bacterial ribotypes associated with three coral species (15), and shifts in bacterial species composition appear to underlie coral health and disease (16, 17). Appreciating this diversity in conservation efforts is important because functional redundancy cannot be assumed. Marine bacteria are but one microbial realm in the ocean for which discoveries with ecosystem consequences abound. Viruses were not studied until 1989 yet are the most abundant biological entities in the sea (10⁷ ml⁻¹). Bacteriophages induce bacterial mortality, creating a futile carbon cycle in which dissolved organic matter assimilated by bacteria is released via bacterial lysis and metabolized by other bacteria, enhancing upper-ocean respiration (18). Species specificity and host density–dependence lead phage to “kill the winner,” maintaining bacterial diversity, with implications for organic matter decomposition (19, 20). Phage diversity studies were initially restricted by the requirement for cultivated hosts. Now, cultivation-independent genomics reveal enormous diversity, including a picorna-like superfamily implicated in phytoplankton mortality, even of toxic bloom-forming algae (21, 22). Furthermore, specific cyanophage distributions vary from coastal to open ocean, likely influencing Prochlorococcus or Synechococcus host distributions differentially (23).

In view of microbial abundance, diversity, dynamics, and influence on ocean chemistry, ecosystem-based conservation models must explicitly include microbes, to develop a functional view that integrates microbes, macrobes, and abiotic ecosystem components. This requires going beyond biodiversity assessment, because functional diversity depends on the environmental context of microbial expression. The task concerns an age-old theme in ecology: scale, both spatial and temporal, and the integration of scales (see the figure). Microbes are no different from larger organisms in this sense—one must study them at habitat scales relevant to their adaptive strategies to determine how their metabolism influences larger-scale ecosystem dynamics. For microbes this spatial scale is minuscule, from micrometers to millimeters. Because microbes influence ecosystem pathways, but only one leads to DMS; thus, the relative expression of particular DMSP-degrading enzymes regulates climate. Overarching the microbial activities is the physical organization of organic matter in seawater, allowing the visualization of ecosystems as molecular architectures. Seawater is structured with cross-linked polymers, colloids, and nano- and microgels, creating an organic matter continuum and a wealth of surfaces displaying nanoscale biochemical bases of ecosystem function. These discoveries illustrate that nanoscale biochemical bases of ecosystem function are tractable, informative, and in-
The gastrointestinal tract of human adults contains more than 400 different species of bacteria. Indeed, the total weight of microflora in the human gut has been estimated to be about 1 kg. Most of these bacteria are commensals that coexist peacefully with their host and remain harmless provided that they do not stray beyond the gut lumen. Some commensals may even confer health benefits upon their host by helping to digest dietary carbohydrates and by maintaining the appropriate balance among the different types of gut bacteria. The correct microbial balance helps to stimulate gut immunity and to prevent colonization by pathogenic bacteria that cause diarrhea and other intestinal disorders (1).

The intestinal epithelium provides a barrier against the invasion of host tissues by both pathogenic and nonpathogenic bacteria (2). However, pathogenic bacteria are able to breach the gut epithelium and the host’s innate immune system in a number of ways, in some cases destroying gut epithelial cells (3). In contrast to bacterial pathogens, commensals have been presumed to reside in the gut lumen with little or no direct interaction with the epithelium. Recent studies, however, indicate that gut commensals do interact with the gut epithelium and can trigger innate and adaptive immune responses. In addition, commensals can influence epithelial cell proliferation, for example, by injecting factors into the gut epithelium that block β-catenin degradation (4). These microbes also enhance the nuclear export of NF-κB, the transcription factor that controls the production of proinflammatory chemokines by gut epithelial cells (5). On page 1662 of this issue, Macpherson and Uhr (6) reveal that the gut mucosa—including the gut epithelium, connective tissue layer (lamina propria), and gut-associated lymphoid tissues (GALT)—has developed an elegant system for keeping commensals in check. They report that commensals are prevented from breaching the gut mucosal barrier by an immunoglobulin A (IgA) antibody–mediated mucosal immune response. This immune response is triggered by presentation of commensal antigens to B cells in GALT by intestinal dendritic cells (DCs).

Cells of the innate immune system, such as dendritic cells and macrophages, provide broad nonadaptive (innate) protection against microorganisms that are newly encountered by the host. Activation of innate host defense depends on specific recognition of microbial signature molecules called pathogen-associated molecular patterns (PAMPs) (7). In the gut mucosa, monocytes and particularly DCs in the intraepithelial and subepithelial layers are specialized for detecting microbial pathogens. Both cell types recognize PAMPs through pattern-recognition receptors that are either secreted or expressed on the immune cell surface (8). These molecules include the Toll-like receptor (TLR) family in animals and the disease resist-